40 research outputs found

    Magmatic Landscape Construction

    Get PDF
    Magmatism is an important driver of landscape adjustment over ∼10% of Earth's land surface, producing 103‐ to 106‐km2 terrains that often persistently resurface with magma for 1–10 s of Myr. Construction of topography by magmatic intrusions and eruptions approaches or exceeds tectonic uplift rates in these settings, defining regimes of landscape evolution by the degree to which such magmatic construction outpaces erosion. We compile data that span the complete range of magmatism, from laccoliths, forced folds, and InSAR‐detected active intrusions, to explosive and effusive eruption deposits, cinder cones, stratovolcanoes, and calderas. Distributions of magmatic landforms represent topographic perturbations that span >10 orders of magnitude in planform areas and >6 orders of magnitude in relief, varying strongly with the style of magmatism. We show that, independent of erodibility or climate considerations, observed magmatic landform geometry implies a wide range of potential for erosion, due to trade‐offs between slope and drainage area in common erosion laws. Because the occurrence rate of magmatic events varies systematically with the volume of material emplaced, only a restricted class of magmatic processes is likely to directly compete with erosion to shape topography. Outside of this range, magmatism either is insignificant on landscape scales or overwhelms preexisting topography and acts to reset the landscape. The landform data compiled here provide a basis for disentangling competing processes that build and erode topography in volcanic provinces, reconstructing timing and volumes of volcanism in the geologic record, and assessing mechanical connections between climate and magmatism

    Wetland mapping at 10 m resolution reveals fragmentation in southern Nigeria

    Get PDF
    Wetland ecosystems play key roles in global biogeochemical cycling, but their spatial extent and connectivity is often not well known. Here, we detect the spatial coverage and type of wetlands at 10 m resolution across southern Nigeria (total area: 147,094 km2), thought to be one of the most wetland-rich areas of Africa. We use Sentinel-1 and Sentinel-2 imagery supported by 1500 control points for algorithm training and validation. We estimate that the swamps, marshes, mangroves, and shallow water wetlands of southern Nigeria cover 29,924 km2 with 2% uncertainty of 460 km2. We found larger mangrove and smaller marsh extent than suggested by earlier, coarser spatial resolution studies. Average continuous wetland patch areas were 120, 11, 55 and 13 km2 for mangrove, marsh, swamp, and shallow water respectively. Our final map with 10 m pixels captures small patches of wetland which may not have been observed in earlier mapping exercises, with 20% of wetland patches being  250 m pixel dimensions) global wetland datasets and provides data critical for both improving land-surface climate models and for wetland conservation

    The Prevalence and Significance of Offset Magma Reservoirs at Arc Volcanoes

    Get PDF
    Determining the spatial relations between volcanic edifices and their underlying magma storage zones is fundamental for characterizing long‐term evolution and short‐term unrest. We compile centroid locations of upper crustal magma reservoirs at 56 arc volcanoes inferred from seismic, magnetotelluric, and geodetic studies. We show that magma reservoirs are often horizontally offset from their associated volcanic edifices by multiple kilometers, and the degree of offset broadly scales with reservoir depth. Approximately 20% of inferred magma reservoir centroids occur outside of the overlying volcano's mean radius. Furthermore, reservoir offset is inversely correlated with edifice size. Taking edifice volume as a proxy for long‐term magmatic flux, we suggest that high flux or prolonged magmatism leads to more centralized magma storage beneath arc volcanoes by overprinting upper crustal heterogeneities that would otherwise affect magma ascent. Edifice volumes therefore reflect the spatial distribution of underlying magma storage, which could help guide monitoring strategies at volcanoes

    High‐resolution InSAR reveals localised pre‐eruptive deformation inside the crater of Agung volcano, Indonesia.

    Get PDF
    During a volcanic crisis, high-rate, localized deformation can indicate magma close to the surface, with important implications for eruption forecasting. However, only a few such examples have been reported, because frequent, dense monitoring is needed. High-resolution Synthetic Aperture Radar (SAR) is capable of achieving 15 cm of line-of-sight shortening occurred over a 400-by-400 m area on the crater floor in September-October 2017, accompanying a deep seismic swarm and flank dyke intrusion. We attribute the deformation to the pressurization of a shallow (<200 m deep) hydrothermal system by the injection of magmatic gases and fluids. We also observe a second pulse of intra-crater deformation of 3–5 cm within 4 days to 11 hr prior to the first phreatomagmatic eruption, which is consistent with interaction between the hydrothermal system and the ascending magma. This phreatomagmatic eruption created the central pathway used during the final stages of magma ascent. Our observations have important implications for understanding unrest and eruption forecasting, and demonstrate the potential of monitoring with high-resolution SAR

    Presentation and analysis of a worldwide database for lava dome collapse events: the Global Archive of Dome Instabilities (GLADIS)

    Get PDF
    Lava dome collapses generate hazardous pyroclastic flows, rockfalls and debris avalanches. Despite advances in understanding lava dome collapses and their resultant products, the conditions that occur prior to collapse are still poorly understood. Here we introduce the Global Archive of Dome Instabilities (GLADIS), a database that compiles worldwide historical dome collapses and their reported properties, including original dome volume (at the time of collapse), dome morphology, emplacement conditions, precursory activity, dome geometry and deposit characteristics. We determine the collapse magnitude for events where possible, using both absolute deposit volumes and relative collapse volume ratios (this being deposit volume as a proportion of original dome volume). We use statistical analysis to explore whether relationships exist between collapse magnitude and extrusion rate, dome growth style, original dome volume, and causal mechanism of collapse. We find that relative collapse magnitude is independent of both the extrusion rate and the original dome volume. Relative collapse volume ratio is dependent on dome growth style, where endogenous growth is found to precede the largest collapses (~75% original volume). Collapses that comprise a higher proportion (<50%) of original dome volume are particularly attributed to both gravitational loading and the development of gas overpressure, whilst collapses comprising a small proportion (<10%) of original dome volume are associated with the topography surrounding the dome, and variations in extrusion direction. By providing validation and/or source data, we intend these data on various dome growth and collapse events, and their associated mechanisms, to be the focus of future numerical modelling efforts, whilst the identified relationships with relative collapse volume ratios can inform collapse hazard assessment based on observations of a growing dome

    Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring

    Get PDF
    Owing to practical limitations less than half of Earth's 1400 subaerial volcanoes have no ground monitoring and few are monitored consistently. Earth-observing satellite missions provide global and frequent measurements of volcanic activity that are closing these gaps in coverage. We compare databases of global, satellite-detections of ground deformation (1992–2016), SO₂ emissions (1978–2016), and thermal features (2000–2016) that together include 306 volcanoes. Each database has limitations in terms of spatial and temporal resolution but each technique contributed 45–86 unique detections of activity that were not detected by other techniques. Integration of these three databases shows that satellites detected ~10² volcanic activities per year before the year 2000 and ~103 activities per year after the year 2000. We find that most of the 54 erupting volcanoes without satellite-detections are associated with low volcano explosivity index eruptions and note that many of these eruptions (71%, 97/135) occurred in the earliest decades of remote sensing (pre-2000) when detection thresholds were high. From 1978 to 2016 we conduct a preliminary analysis of the timing between the onset of satellite-detections of deformation (N = 154 episodes, N = 71 volcanoes), thermal features (N = 16,544 episodes, N = 99 volcanoes), and SO₂ emissions (N = 1495 episodes, N = 116 volcanoes) to eruption start dates. We analyze these data in two ways: first, including all satellite-detected volcanic activities associated with an eruption; and second, by considering only the first satellite-detected activity related to eruption. In both scenarios, we find that deformation is dominantly pre-eruptive (47% and 57%) whereas available databases of thermal features and SO₂ emissions utilizing mainly low-resolution sensors are dominantly co-eruptive (88% and 76% for thermal features, 97% and 96% for SO₂ emissions)

    Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains

    Get PDF
    Global Synthetic Aperture Radar (SAR) measurements made over the past decades provide insights into the lateral extent of magmatic domains, and capture volcanic process on scales useful for volcano monitoring. Satellite-based SAR imagery has great potential for monitoring topographic change, the distribution of eruptive products and surface displacements (InSAR) at subaerial volcanoes. However, there are challenges in applying it routinely, as would be required for the reliable operational assessment of hazard. The deformation detectable depends upon satellite repeat time and swath widths, relative to the spatial and temporal scales of volcanological processes. We describe the characteristics of InSAR-measured volcano deformation over the past two decades, highlighting both the technique’s capabilities and its limitations as a monitoring tool. To achieve this, we draw on two global datasets of volcano deformation: the Smithsonian Institution Volcanoes of the World database and the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics volcano deformation catalogue, as well as compiling some measurement characteristics and interpretations from the primary literature. We find that a higher proportion of InSAR observations capture non-eruptive and non-magmatic processes than those from ground-based instrument networks, and that both transient ( 5 years) deformation episodes are under-represented. However, satellite radar is already used to assess the development of extended periods of unrest and long-lasting eruptions, and improved spatial resolution and coverage have resulted in the detection of previously unrecognised deformation at both ends of the spatial scale (~ 10 to > 1000 km²). ‘Baseline’ records of past InSAR measurements, including ‘null’ results, are fundamental for any future interpretation of interferograms in terms of hazard‚ both by providing information about past deformation at an individual volcano, and for assessing the characteristics of deformation that are likely to be detectable (and undetectable) using InSAR. More than half of all InSAR deformation signals attributed to magmatic processes have sources in the shallow crust (< 5 km depth). While the depth distribution of InSAR-derived deformation sources is affected by measurement limitations, their lateral distribution provides information about the extent of active magmatic domains. Deformation is common (24% of all potentially magmatic events) at loci ≥5 km away from the nearest active volcanic vent. This demonstrates that laterally extensive active magmatic domains are not exceptional, but can comprise the shallowest part of trans-crustal magmatic systems in a range of volcanic settings

    Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St. Vincent quantified from synthetic aperture radar backscatter

    Get PDF
    The extrusion rate of a lava dome is a critical parameter for monitoring silicic eruptions and forecasting their development. Satellite radar backscatter can provide unique information about dome growth during a volcanic eruption when other datasets (e.g., optical, thermal, ground-based measurements, etc.) may be limited. Here, we present an approach for estimating volcanic topography from individual backscatter images. Using data from multiple SAR sensors we apply the method to the dome growth during the 2021 eruption at La Soufrière, St. Vincent. We measure an average extrusion rate of 1.8 m³s¯¹ between December 2020 and March 2021 before an acceleration in extrusion rate to 17.5 m³s¯¹ in the 2 days prior to the explosive eruption on 9 April 2021. We estimate a final dome volume of 19.4 million m³, extrapolated from the SAR sensors, with approximately 15% of the total extruded volume emplaced in the last 2 days. A possible explanation for the acceleration in extrusion rate could be the combined emptying of a conduit and reservoir of older material before the ascent of gas-rich magma in April 2021

    Old magma and a new, intrusive trigger: using diffusion chronometry to understand the rapid-onset Calbuco eruption, April 2015 (Southern Chile)

    Get PDF
    In April 2015, an unpredicted rapid-onset eruption occurred at Calbuco Volcano, Southern Andes of Chile. This event consisted of two, sub-Plinian eruptions separated by a few hours. By analysis of Fe–Ti exchange between ilmenite and titanomagnetite crystals in samples of erupted material, we determine timescales of pre-eruptive heating experienced at the partially solidified chamber base and constrain the magma residence time for the bulk of the carrier magma. Analysis of the Fe–Ti oxide pairs from a sample retrieved from a pyroclastic density current deposit (Cal-160) shows that it was affected by a significant heating event (recording 70–220 °C of heating), while other collected samples did not record this late heating. This sample is interpreted to represent a piece of crystal mush located at the bottom of a prolate, ellipsoidal mush reservoir, mobilised < 4 days before the eruption by a triggering pulse of mafic magma considerably hotter than the typical magmatic temperature of the reservoir. Another two fall deposit samples (lapillus, Cal-149Tb and Cal-155) of the eruption are interpreted to represent resident, eruptible magmas that did not interact with any magma recharge immediately prior to or during the eruption. We infer that these magmas had been at eruption temperature for some years based on their extensively equilibrated Fe–Ti oxides

    Submarine landslide megablocks show half of Anak Krakatau island failed on December 22nd, 2018

    Get PDF
    As demonstrated at Anak Krakatau on December 22nd, 2018, tsunamis generated by volcanic flank collapse are incompletely understood and can be devastating. Here, we present the first high-resolution characterisation of both subaerial and submarine components of the collapse. Combined Synthetic Aperture Radar data and aerial photographs reveal an extensive subaerial failure that bounds pre-event deformation and volcanic products. To the southwest of the volcano, bathymetric and seismic reflection data reveal a blocky landslide deposit (0.214 ± 0.036 km3) emplaced over 1.5 km into the adjacent basin. Our findings are consistent with en-masse lateral collapse with a volume ≥0.175 km3, resolving several ambiguities in previous reconstructions. Post-collapse eruptions produced an additional ~0.3 km3 of tephra, burying the scar and landslide deposit. The event provides a model for lateral collapse scenarios at other arc-volcanic islands showing that rapid island growth can lead to large-scale failure and that even faster rebuilding can obscure pre-existing collapse
    corecore